MODS: _____

UNIT 3 - ATOMIC THEORY

Date	Agenda	Homework
Thurs 10/9	Unit 3 PPT - History of Atoms and First 20 Elements (slides 1-25) Introduce Poster Project (instructions on Page 3) Unit 3 PPT - Start Parts of an Atom if time permitted	 Read p 107-112 Do # 1-3 p 108 and #4-6 p 112 Poster Project (due 10/14)
Fri 10/10	Unit 3 PPT –Parts of an Atom, Valence Electrons/Dot Diagrams, and Atomic Structure (slides 26-41) If time, work on Poster Projects	 Work on Posters (due 10/14) Read p 113-119 Worksheet #1 – Atomic Structure History
Mon 10/13	Guidance Visits – prep for PSATs	 Work on Posters (due 10/14) Worksheet #2 - Atomic Structure Quiz tomorrow – Symbols 1-20
Tues 10/14	Quiz – Symbols 1-20 Review HW Worksheet #2 (Atomic Structure) Unit 3 PPT – Rest of elements (slides 42-72)	• Finish Rest of Elements, if needed
	Poster presentations Make Atomic Structure Cards (Elements #1-20), instructions pg 7 (pkt)	Quiz – All Elements tomorrow
Thurs 10/16	Quiz – All Elements on List If time, continue working on Atomic Structure Cards	 Finish Atomic Structure Cards Quiz – Atomic Structure tomorrow
Fri 10/17	Quiz - Atomic Structure Unit 3 PPT – Ions (slides 73-79)	 Worksheet #3 – Ions Quiz – Ions tomorrow
Mon 10/20	Go over HW Worksheet #3 Quiz – Ions Prelab – Flame Test (Ions)	Add ions to Element CardsFinish Prelab, if needed
Tues 10/21	Lab – Flame Test (Ions)	• Finish conclusion
Wed 10/22	Unit 3 PPT – Isotopes (slides 80-89) Worksheet #4: Isotopes	Read p 115-120Problem # 18-26 p 121
Thurs 10/23	Lab - Beanium	Study for testFinish lab after school if needed
Fri 10/24	Go over lab Weighted average atomic mass calculations (reference slides 85-89) Review for test	 Study for the test Finish Worksheet #5 – Review for Test
Mon 10/27	Go over HW Worksheet #5 Questions?	• Study for the test
Tues 10/28	Test - Chapter 3	

CHEMISTRY SYMBOLS TO KNOW

ALUMINUM	ANTIMONY
ARGON	ARSENIC
BARIUM	BISMUTH
BORON	BROMINE
CADMIUM	CALCIUM
CARBON	CESIUM
CHLORINE	CHROMIUM
COBALT	COPPER
FLUORINE	FRANCIUM
GOLD	HELIUM
HYDROGEN	IODINE
IRON	KRYPTON
LEAD	LITHIUM
MAGNESIUM	MANGANESE
MERCURY	NEON
NICKEL	NITROGEN
OXYGEN	PHOSPHORUS
PLATINUM	POTASSIUM
RADIUM	RADON
SILICON	SILVER
SODIUM	STRONTIUM
SULFUR	TIN
TITANIUM	TUNGSTEN
URANIUM	XENON
ZINC	BERYLLIUM

SYMBOLS POSTER

Each student will be assigned an element to research. The posters will be due on

______ and will be presented to the class on that day. The posters will count as a lab grade.

Make sure to include the following:

- Name of element
- Symbol of element
- Atomic number of element
- Atomic mass of element
 - o Number of protons
 - o Number of electrons
 - Number of neutrons
- Five interesting facts about the element you must be able to explain these!
- On colored 8 ½ by 11 paper
- Use at least 3 different colors
- Name on BACK of poster
- Neatness and creativity count!!

These posters will be displayed around the room for everyone to view...do an awesome job!!!

Rubric:

Category		Poin	ts Pos	sible
Name of element	0	3		
Symbol of element	0	3		
Atomic number of element	0	3		
Atomic mass of element	0	3		
Five interesting facts about the element	0	# x 2=		
On colored 8 ½ by 11 paper	0	3		
Use at least 3 different colors	0	2	4	6
Name on BACK of poster	0	2		
Neatness and creativity count!!	0	4	7	10

Total Points Earned: ______

Total Points Available: 43

WORKSHEET #1: ATOMIC HISTORY WORKSHEET

Watch the following YouTube Videos and answer the questions below:

The Discovery of the Electron: <u>https://www.youtube.com/watch?v=IdTxGJjA4Jw</u>

Zrv3hVEOpxuTvtRWutY2xi09HrDK

- 1. Ernest Rutherford was one of the first ______
- 2. Rutherford used beams of particles to explore the ______
- 3. What did Rutherford use to produce beams of particles?
- 4. What did Rutherford and team expect to happen if the structure of the atom was as Thompson suggested?
 - a. What actually happened?
- 5. What analogy can be used to describe what Rutherford suggests the structure of the atom to be:
 - a. Is he correct? _____
- 6. Electrons are now know to "hang out" in _____
- 7. Rutherford determined most of the atom is _____
- 8. Rutherford and ______ found that the nucleus is made of two kinds of particles:

Rutherford's Experiment: https://www.youtube.com/watch?v=5pZjOu_XMbc

**More details of Rutherford's experiment

(**note: alpha particle = 2 protons + 2 neutrons bound together into a particle)

- 1. In 1911, ______ and his partners were studying the angle that which alpha particles were scattered as they pass through a thin gold foil.
- 2. Most alpha particles traveled ______ through the gold undeflected, but some

_____ at large angles.

a. What did this mean? ______

3. Draw what is happening with the gold atoms and the alpha particles. Label everything you draw:

- a. Most of the atom is occupied by what? ______
- b. When the alpha particle encounters a nucleus, what happens?

Atomic Theory Song: <u>https://www.youtube.com/watch?v=07yDiELe83Y</u>

Write down 5 things you learned from this song in the space below:

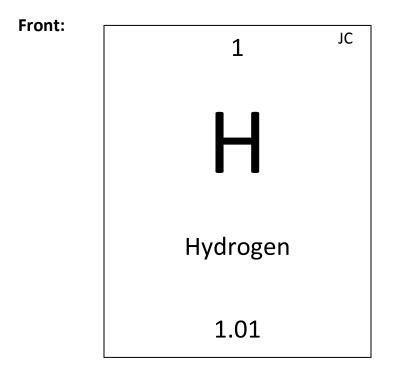
- 1.
- 2.
- Ζ.
- 3.
- 4.
- 5.

WORKSHEET #2: ATOMIC STRUCTURE

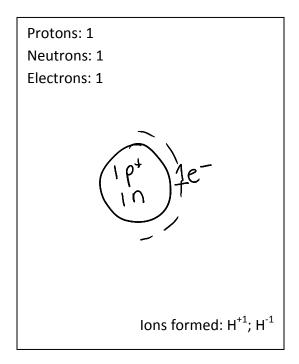
DEFINITIONS

Atomic Number

Atomic Mass


Mass Number

FILL IN THE TABLE BELOW


Element	Atomic Number	Atomic Mass	Mass Number	# of Protons	# of Electrons	# of Neutrons
Aluminum			27			
	9		19			
			20	10		
Calcium			40			
	5		11			
			35	17		
Iodine			127			
	12		24			
			65	30		

INSTRUCTIONS FOR ELEMENT CARDS

For elements #1-20, make an element card for each, following the instructions below.

Back:

WORKSHEET #3: IONS


Name	Symbol	Atomic Mass	Atomic Number	Mass Number	Charge	Protons	Neutrons	Electrons
	Na ⁺¹						12	
			17	36	-1			
				39		19		18
Argon				40				18
						5	5	2
Aluminum								

WORKSHEET #4: ISOTOPES

Fill in the blank:

- 1. _____ and _____ are the same for different isotopes of the same element.
- 2. ______ is different for different isotopes of the same element.

Match the name with the appropriate isotope:

Determine the number of protons, electrons, and neutrons for the following isotopes:

	Protons	Neutrons	Electrons
35 Cl 17			
37 Cl 17			
12 C 6			
13 C 6			
14 C 6			

Continued on the next page

Percent abundance

1. The mass of element X has a 78.99% abundance for isotope 23.9850, 10.00% for isotope 24.9858, and 11.01% for isotope 25.9826. What is the atomic mass of the element? What element is it?

2. Natural samples of copper contain two isotopes. Cu-63 has a mass of 62.930 amu and Cu-65 has a mass of 64.928 amu. The percent abundance of Cu-63 is 69.09%. Calculate the atomic mass of copper.

LAB: BEANIUM

Terminology:

Define ELEMENT-

Define ISOTOPE-

LAB:

Problem: How is the average mass of isotopes determined?

Introduction:

Imagine a new element has been discovered, and has been given the name "beanium". Students at local high schools have been given the job of determining the number of isotopes of this new element, the mass of each isotope, the abundance of each isotope and the "atomic weight" of the new element. Fortunately, beanium atoms are very large, so you will be able to sort and weigh them easily. In this laboratory investigation, you will determine the abundance of each "isotope" of beanium, and determine the average mass (atomic weight) of the element in much the same way the average mass of other elements is determined. Then you will compare your result to a standard measurement of average mass.

Materials (per group): a sample of atoms of the new element, a weigh boat, balance

Procedure:

- 1. Determine the number of isotopes of beanium based upon the appearance (size, color, etc.).
- 2. Sort the beanium atoms into groups based on appearance. Each group represents a different isotope. Count the total number of atoms of each isotope and record the result in column (a) of the data table, Method 1, on the next page. Add those numbers to get the total number of atoms in your sample. Record the total in the data table.
- 3. Determine the abundance of each isotope using the formula below:

Abundance = <u>number of atoms of each isotope</u> total number of atoms

Record the results in column (b) of the data table, Method 1, on the next page.

- 4. Using a balance, measure the total mass of **all** the atoms of <u>each</u> isotope individually. Record the total mass in column (c) of the data table.
- Find the typical mass of <u>ONE</u> atom of each isotope by dividing the total mass by the number of atoms ((c) ÷ (a)). Record the result in column (d) of the data table, Method 1, on the next page.
- 6. Multiply the abundance of each isotope by its mass to find the product ((b) x (d)), and record the result in the last column of the data table.
- 7. <u>Add</u> the products in the last column to find the "atomic mass" of the element beanium. Record the result in the data table, Method 1, on the next page.

Observations:

Beanium Isotope	(a) Number of atoms (beans)	(b) Abundance	(c) Total mass (grams)	(d) Mass of Isotope (grams)	(e) Product of mass x abundance	
1						
2						
3						
		Atomic Mass of "Beanium"				

Conclusion:

1. What do the three kinds of beans represent in this exercise?

2. Why isn't the atomic mass of most of the elements on the Periodic Table an integer (why do they contain decimals)?

3. What do isotopes have in common? How do isotopes differ?

4. What is the difference between mass number and atomic number?

WORKSHEET #5: REVIEW ATOMIC STRUCTURE

You may use the following answers more than once:

a. isotope	b. atomic number	c. atomic mass number	d. proton
e. electron	f. neutron	g. nucleus	h. ion

- ____1. Has a positive charge
- _____2. Where the proton is found
- _____3. Is the sum of the neutrons and the protons
- _____4. An element with different number of neutrons
- _____5. Has no charge
- _____6. Where the neutron is found
- _____7. Is the lightest particle
- _____8. Has a charge of –1
- _____9. Elements with different number of electrons
- _____10. The number of protons in an element
- _____11. Particle that distinguishes the elements from one another
- _____12. Particle found outside the nucleus

Fill in the table:

Name	Symbol	Protons	Neutrons	Electrons	Charge	Atomic Mass Number	Atomic Number
					-3	31	15
		5		5		11	
Nitrogen				10		14	
		19	20	18			
	Mg ⁺²		12				

Representing Atomic Structure:

Draw the picture that represents the atom 39 K.

Atomic number = Atomic mass = Mass number = # of protons = # of electrons = # of neutrons =

Draw the dot diagram:

Would you expect ³⁹K to be stable or reactive? Give reasons why and explain the octet rule.

Would you expect ${}^{39}K$ to become ion? Why?

If you expect ³⁹K to become an ion, would it become positive or negative? Why?

Calculate the average atomic mass for oxygen to the thousandth place:

	0-16	0-17	0-18
Average mass of isotope	15.995	16.995	17.999
% abundance	99.759 %	0.037%	.207%

What is the average atomic mass for oxygen?